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Abstract-The characteristic functions and some state quantities are modified in the presence of phase 
interface and surface tension. The modification of the free energy, entropy, internal energy, enthalpy, 
free enthalpy, latent heat, and Clausius-Clapeyron equation will be deduced for both droplets and vapour 

bubbles of uniform and nonuniform temperatures and size distribution. 

NOMENCLATURE 

area of phase interface; 

constant; 

internal energy; 

specific internal energy; 

free energy; 

specific free energy; 

free enthalpy; 

specific free enthalpy; 

enthalpy; 

specific enthalpy; 

mass; 

pressure; 

saturation pressure; 

pressure difference; 

radius of disperse particle; 

latent heat of vaporization; 

entropy; 

specific entropy; 

temperature; 

volume; 

specific volume; 

function in general; 

mass density; 

surface tension; 

refers to liquid phase; 

refers to vapour phase; 

refers to disperse state. 

different from the algebraic sum of them, correspond- 

ing to the separate phases without interface, other 

circumstances being equal, i.e. their total mass, tem- 

perature, and pressure are identical. Therefore, to the 

precise desctiption of the two-phase systems the addi- 

tional effects of the surface tension are also to be 

considered. Their neglect is permissible only in case 

the undermentioned simplifying assumptions are valid; 

-the mass of the interfacial boundary layer is very 

small in comparison with the total mass of the system; 

-the surface tension produces no superpressure within 

one of the phases, in other words, the curvature of the 

interface is slight, practically nil. 

While investigating the two-phase systems arises the 

question, to which phase are belonging the variations 

caused by the surface tension. In case one of the phases 

is dispersed, it can clearly be seen that the state of this 

phase is affected predo~nantly by the surface tension, 

consequently, these variations may be attached to the 

disperse phase, while the coherent phase suffers practi- 

cally no change [l]. 

Based on this assumption, concerning the character- 

istic functions it will be attempted to reduce the 

investiga~on of the two-phase one-component systems 

to that of the disperse phase, as seen in the sequel. 

This treatment can make easier passing over to the 

systems of two or more components. 

The well-known interrelations of the characteristic 

functions in general are defined as follows: 

THE PRECISE knowledge of the characteristic functions 

and state quantities plays an important role when 
E=F+TS, 

describing some thermodynamic relations of the heat- 
H = E+PV, 

and mass-transfer processes. G = F-l-PI/ 

According to the theorem of thermodynamics about In case these characteristic functions relate to a single 

the surface tension, the characteristic functions and disperse particle surrounded by the coherent phase of 

some state quantities of the two-phase systems are the same chemical composition, i.e. to a droplet within 
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vapour bulk, or a bubble within liquid bulk, let us 

introduce the notation: 

E, = F.+ TX, (1) 

H, = E.+P,V, (2) 

G, = F,+P.V. (3) 

If the free energy F belongs to a certain part of the 

medium without interface, in the presence of the inter- 
face the same mass has an increased free energy 

F, = F+oA, (4) 

as shown by Grigull, Bach and Straub [2-41, as well 

as, by Novikov and Voskresenskiy [5]. 
The entropy can be deduced from the free energy 

[6,7], in this case it is defined by 

5=-E 
i?T’ 

and this definition, by means of the equation (4), 

results in 

for the entropy modified in the presence of phase 
interface, as proved by Keenan [S), Novikov and 

Voskresenskiy [5]. 
Having replaced the equations (4) and (5) into the 

definition (l), for the internal energy of the surrounded 
particle belonging to the disperse phase 

E,=E+ CT-T% A 
i > 

is yielded, as deduced by Keenan [8], Grigull, Bach 
and Straub [2-41, as well as, by Novikov and 
Voskresenskiy [S]. 

It is known that the surrounded particle of the two- 

phase system always has a superpressure (AP) in com- 
parison with the environmental pressure. However, the 
pressure within the surrounded particle is different 
not only from the environmental pressure, but also 
from the saturation pressure (by BP,) corresponding 
to its own temperature [9]. 

Under the circumstances, the definition of the en- 
thalpy (2) becomes 

H,=H+ g-T$4 A-AP,V, 
i > 

(7) 

and the free enthalpy (3) turns into 

G, = G+uA-AP,V, (8) 

in agreement with the definition of the work required 
for creating the bubble surface, as explained by Volmer 
[lo] and Tong [ll]. 

When investigating the droplets and bubbles, as a 

rule, they are assumed spherical ones. According to 
Laplace’s theorem, the capillary superpressure within 
the spherical particle of disperse phase is given by 

AP=;. 

This formula was transformed by Kelvin, considering 
that the vapour pressure deviates from the saturation 

pressure by 

where the upper sign (-) relates to the droplet, and 
the lower one (+) to the bubble [9]. 

This means that the difference between saturation 

pressure P, and bubble pressure P:’ is immediately 
given by the equation (lo), while for determining the 

difference between saturation pressure P, and droplet 

pressure Pi the equation (10) should be completed by 
the pressure difference between phases AP (9). Based 

on this assumption, the deviation between the pressure 
within disperse particle of both kinds and the saturation 

pressure can be defined by 

(11) 

where the signs are to be used as above, and the 

density p in numerator always belongs to the disperse 
phase. 

As can be seen from the equations (9)-(11) in case 

of droplets the pressures in both phases exceed the 
saturation pressure, and in case of bubbles the pressures 

in both phases deviate to the contrary. In other words, 
on condition that a system was in thermal equilibrium, 
both of its phases would be either subcooled (droplets 
within vapour bulk), or superheated (bubbles within 
liquid bulk), according to the usual terminology. 

The characteristic functions per unit mass of disperse 
phase in specific form can be obtained from the 
equations (4)-Q), replacing the spherical surface and 
volume, as well as, the pressure difference (1 l), further- 
more, dividing by the mass of a single droplet or 
bubble, respectively. Provided that the system is of 
monodisperse character, i.e. the temperature and size 
distribution in disperse phase is uniform, all these 
operations result in the following functions which are 
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to be substituted corresponding to saturation state: 

f.=/++, 

3 da 
s, = S-Rp/$ (13) 

In the equations (15) and (16) the upper sign (i-) 
relates to the droplet, and the lower one f-) to the 
bubble. 

The general formulation of latent heat 

r=:v-h 

leaves out of consideration the effect of the surface 
tension and capillary superpressure, When taking into 
account also this effect, there are two variants depend- 
ing on the nature of the two-phase system. 

Ifdroplets aredispersed in vapour bulk, with uniform 
temperature and size distribution, the latent heat per 
unit mass of liquid phase can be defined by 

r’ = h” - h’ * I 

In case bubbles of uniform temperature and size 
distribution take place in a liquid bulk, the latent heat 
per unit mass of vapour phase can be determined by 

rt =: h:-h’. 

Both kinds of the capillary latent heat can be 
described by means of the common formula 

r~=r~j$[cr(l&S.~)--Tg]. (17) 

in which the upper signs relate to droplets, while the 
lower ones to bubbles. 

As can be seen, the two kinds of the capillary 
latent heat are different from the usual one, viz. 
according to 

on condition that temperatures and radii are equal. 
In other words, less heat is required to the evaporation 
of the liquid phase in case it forms droplets, on the 
one hand, and during the condensation of the vapour 
phase forming bubbles more energy will be released 
than the usual latent heat, on the other hand. 

The modification of the characteristic functions is 
accompanied also by the variation of the Clausius- 
Clapeyron equation 

dP, _ s”-sr 

dT v”-vv)’ 

what can be determined considering that the pressure 
of disperse particle is different from the saturation 
pressure. Thus the Clausius-Clapeyron equation either 
turns into 

(18) 

m 2a C” 

aR=--- RZ’v”-v’ 

for droplets within vapour bulk, or it becomes 

i?P:’ dP 20 L” _=s-- 
dT dT R‘Y”-a’ 

(19) 

for bubbles within liquid bulk, where in both cases all 
the physical variables are to be substituted correspond- 
ing to saturation state. 

In case the system is of polydisperse character, in 
other words, if the temperature and size distribution 
of disperse phase is nonuniform, then an average is to 
be determined. In this regard there are two different 
alternatives depending on the nature of distribution. 
The distribution function may have either discreet or 
continuous character. 

On condition that the disperse phase is composed of 
discreet groups, in each of them the single spherical 
particles have temperature q and radius R,, and the 
mass Mij represents the total mass of these groups, 
then the average per unit mass of disperse phase can 
be determined by 

in which formula the notation z, is to be substituted 
corresponding to 

2. = .L, s,, e,, k, g., r, 

from the equations (12)-( 17), in turn. 
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Similarly, in case the disperse phase contains 
spherical particles of continuous temperature and size 
distribution, the formula 

i =~~z,(T,R)MdTdR 
* 

&MdTdR - 
(21) 

yields the average of the above-mentioned functions 
per unit mass of disperse phase. 

Till now we dealt with the characteristic functions 
concerning the disperse phase, independent of its state 
of aggregation (droplet or bubble), but, of course, the 
corresponding physical quantities of the coherent phase 
are also to be considered, i.e. a weighted average of 
both the phases should be determined when describing 
the entire two-phase system. 

The surface tension is often assumed as a temperature 
function what is exact merely in case of a horizontal 
plain surface. When investigating the droplets and 
bubbles, they are regarded as spherical ones, and the 
effect of the curvature can be taken into consideration, 
using instead of the usual surface tension the formula 

R 

gt = icz O, 
(22) 

where C is an empiric constant, which amounts to 
lo-“- 10e9m, as can be seen in certain sources 
[8, 121. From the equation (22) by differentiation 

30. R da 

8T Rf2CdT 
(23) 

is yielded. Applying these functions, the equations 
(4)-(19) do keep their forms deduced above, apart 
from the slight variation that 

R,=Rf2C (24) 

should be substituted for the radius R in them. 

In case of extremely small sizes also this effect can 
be considered, if wanted. 
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MODIFICATION DES FONCTIONS CARACTERISTIQUES 
DANS LES SYSTEMES BIPHASIQUES A UN SEUL COMPOSANT 

R&sum&-Les fonctions CaractCristiques et quelques grandeurs d’ktat sont modifikes en prtsence de 
l’interface et de la tension interfaciale. La modification de I’Cnergie libre, de l’entropie. de l’knergie interne, 
de l’enthalpie, de l’enthalpie libre, de la chaleur latente et de I’Cquation de Clausius+Clapeyron est 
diterminke pour des gouttes et des bulles de vapeur, B temp&rature uniforme ou non et avec une 

distribution de dimension. 

DIE MODIFIKATION DER CHARAKTERISTISCHEN FUNKTIONEN 
IN DISPERSEN ZWEIPHASEN-EINKOMPONENTEN-SYSTEMEN 

Zusammenfassung-Die charakteristischen Funktionen und einige Zustandsfunktionen werden unter 
Beriicksichtigung von Phasengrenzfliichen und OberflPchenspannungen modifiziert. Die Modifikation 
der Funktionen fiir die freie Energie, Entropie. innere Energie, Enthalpie, freie Enthalpie, latente Wlrme 
sowie der Gleichung von Clausius-Clapeyron werden fiir Tropfen und Dampfblasen von gleichmlBiger 

und ungleichmll3iger Temperatur- und GrijBenverteilung abgeleitet. 
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MO)J~@WKAIJUI XAPAKTEPWZTMYECKMX @YHKI&@I )$Vl flkfCl-IEPCHbIX 
ABYXQA3HbIX OAHOKOMI-IOHEHTHbIX CPICTEM 

AilHOTaUHR- h'fOAEi@fWipOBaHbI XapaKTepHCTIWeCKlie (PyHKUUH H HeKOTOpbIe BeJ-IWIHHbI B ypaBHe- 
HUH COCTOIlHBIl ITpH HaJMWili MeX@3OBOti IIOBepXHOCTtt pa3AelTa W IlOBePXHOCTHOrO HLTRlKeHHR. 

K~KA.JIR KalWIb,TaKHAJIKQ'3bIpbKOB~apaIIpH PaBHOMepHOM paCl7~AesIeHHIiHHepaBHOMepHOM 

pacnpenenenau wx no TeMnepalype A pa3MepaM nonj=ieaa Mona&iuuposakniarr 4opMa CBO60AHOti 
3HepI?iH, 3HTpOI'IHH, BHyTpeHHet 3HepniH, 3HTaJIblTUH, CBO6OAHOti 3HTaJIbllH&i, CKPblTOfi TeIIJIOTbI 

H ypaBHeHUn Knasrryca-KnainepoHa. 
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