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Abstract—The characteristic functions and some state quantities are modified in the presence of phase

interface and surface tension. The modification of the free energy, entropy, internal energy, enthalpy,

free enthalpy, latent heat, and Clausius-Clapeyron equation will be deduced for both droplets and vapour
bubbles of uniform and nonuniform temperatures and size distribution.

NOMENCLATURE
A, area of phase interface;
C, constant;
E, internal energy;
e, specific internal energy;
F, free energy;
fy specific free energy;
G, free enthalpy;
g, specific free enthalpy;
H, enthalpy;
h, specific enthalpy;
M, mass;
P, pressure;
P,  saturation pressure;
AP, pressure difference;
R, radius of disperse particle;
r, latent heat of vaporization;
S, entropy;
s, specific entropy;
T, temperature;
v, volume;
v, specific volume;
z, function in general;
i3 mass density;
o, surface tension;
’ refers to liquid phase;
" refers to vapour phase;
*, refers to disperse state.

THE PRECISE knowledge of the characteristic functions
and state quantities plays an important role when
describing some thermodynamic relations of the heat-
and mass-transfer processes.

According to the theorem of thermodynamics about
the surface tension, the characteristic functions and
some state quantities of the two-phase systems are

different from the algebraic sum of them, correspond-
ing to the separate phases without interface, other
circumstances being equal, i.e. their total mass, tem-
perature, and pressure are identical. Therefore, to the
precise description of the two-phase systems the addi-
tional effects of the surface tension are also to be
considered. Their neglect is permissible only in case
the undermentioned simplifying assumptions are valid;
—the mass of the interfacial boundary layer is very
small in comparison with the total mass of the system;
—the surface tension produces no superpressure within
one of the phases, in other words, the curvature of the
interface is slight, practically nil.

While investigating the two-phase systems arises the
question, to which phase are belonging the variations
caused by the surface tension. In case one of the phases
is dispersed, it can clearly be seen that the state of this
phase is affected predominantly by the surface tension,
consequently, these variations may be attached to the
disperse phase, while the coherent phase suffers practi-
cally no change [1].

Based on this assumption, concerning the character-
istic functions it will be attempted to reduce the
investigation of the two-phase one-component systems
to that of the disperse phase, as seen in the sequel
This treatment can make easier passing over to the
systems of two or more components.

The well-known interrelations of the characteristic
functions in general are defined as follows:

E=F+TS,
H=E+PV,
G =F+PV.

In case these characteristic functions relate to a single
disperse particle surrounded by the coherent phase of
the same chemical composition, i.e. to a droplet within
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vapour bulk, or a bubble within liquid bulk, let us
introduce the notation:

E.=F+TS., 1)
H =E,+PJV, 9]
G.=F,+PV. (3)

If the free energy F belongs to a certain part of the
medium without interface, in the presence of the inter-
face the same mass has an increased free energy

F.=F+ocA, 4)

as shown by Grigull, Bach and Straub [2-4], as well
as, by Novikov and Voskresenskiy [5].

The entropy can be deduced from the free energy
[6, 7], in this case it is defined by

CF
°oT

>

and this definition, by means of the equation (4),
results in

S,:S—ﬁA (5)

for the entropy modified in the presence of phase
interface, as proved by Keenan [8], Novikov and
Voskresenskiy [5].

Having replaced the equations (4) and (5) into the
definition (1), for the internal energy of the surrounded
particle belonging to the disperse phase

do
E.=E -T—1A 6
+<a dT) (6)

is yielded, as deduced by Keenan [8], Grigull, Bach
and Straub [2-4], as well as, by Novikov and
Voskresenskiy [5].

It is known that the surrounded particle of the two-
phase system always has a superpressure (AP) in com-
parison with the environmental pressure. However, the
pressure within the surrounded particle is different
not only from the environmental pressure, but also
from the saturation pressure (by AP,) corresponding
to its own temperature [9].

Under the circumstances, the definition of the en-
thalpy (2) becomes

do

H,=H -T
+(a ar

>A —APRYV, (7

and the free enthalpy (3) turns into
G, = G+cA—APYV, (8)
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in agreement with the definition of the work required
for creating the bubble surface, as explained by Volmer
[10] and Tong [11].

When investigating the droplets and bubbles, as a
rule, they are assumed spherical ones. According to
Laplace’s theorem, the capillary superpressure within
the spherical particle of disperse phase is given by

2
ap="2 )
R

This formula was transformed by Kelvin, considering
that the vapour pressure deviates from the saturation
pressure by

AP —p_p 72 (10)
R p'—p
where the upper sign (—) relates to the droplet, and
the lower one (+) to the bubble [9].

This means that the difference between saturation
pressure P, and bubble pressure P, is immediately
given by the equation (10), while for determining the
difference between saturation pressure P, and droplet
pressure P, the equation (10) should be completed by
the pressure difference between phases AP (9). Based
on this assumption, the deviation between the pressure
within disperse particle of both kinds and the saturation
pressure can be defined by

AP, =3 L, (11)

where the signs are to be used as above, and the
density p in numerator always belongs to the disperse
phase.

As can be seen from the equations (9)—(11), in case
of droplets the pressures in both phases exceed the
saturation pressure, and in case of bubbles the pressures
in both phases deviate to the contrary. In other words,
on condition that a system was in thermal equilibrium,
both of its phases would be either subcooled (droplets
within vapour bulk), or superheated (bubbles within
liquid bulk), according to the usual terminology.

The characteristic functions per unit mass of disperse
phase in specific form can be obtained from the
equations (4)—(8), replacing the spherical surface and
volume, as well as, the pressure difference {11), further-
more, dividing by the mass of a single droplet or
bubble, respectively. Provided that the system is of
monodisperse character, i.e. the temperature and size
distribution in disperse phase is uniform, all these
operations result in the following functions which are
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to be substituted corresponding to saturation state:

3
ﬂ=f+§;m (12)
3 de
=S (13)
3/ de\
{14)

In the equations (15) and fn
relates to the droplet, and the lower one (—) to the
bubble.

The general formulation of latent heat

r=h—H

leaves out of consideration the effect of the surface
tension and capillary superpressure. When taking into
account also this effect, there are two variants depend-
ing on the nature of the two-phase system.

If droplets are dispersed in vapour bulk, with uniform
temperature and size distribution, the latent heat per
unit mass of liquid phase can be defined by

.= h"—h.

In case bubbles of uniform temperature and size
distribution take place in a liquid bulk, the latent heat
per unit mass of vapour phase can be determined by

r = hl—H.

Bnath Linds Af th
Both kinds of the capillary latent heat can be

described by means of the common formula

1 F g N\ da“!
Fo=rF— 1 i = T—|,
Rp[ ( 3p—p ) dT
in which the upper signs relate to droplets, while the
lower ones to bubbles.
As can be seen, the two kinds of the capillary

latent heat are different from the usual one, viz
according to

(17)

re<r<r.,

on condition that temperatures and radii are equal.
In other words, less heat is required to the evaporation
of the liquid phase in case it forms droplets on the
and during the condensation of the vapour
phase forming bubbles more energy will be released

than the usual latent heat, on the other hand.
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The modification of the characteristic functions is
accompanied also by the variation of the Clausius—
Clapeyron equation

dT  v'=v"

what can be determined considering that the pressure
of disperse particle 1s different from the saturation
pressure. Thus the Clausius-Clapeyron equation either
turns into

oP. 4P 25 v
oT dT R v —v
x(—lnrr-&» —n~\$ (18)
\dT v'—-v dT "
P, . 26 W
AT T RE T
R R* v'—v J
for droplets within vapour bulk, or it becomes
éP! _dP, 26 v )
T dT R v'—¢
d v// d U”\
X (31n0—~—-—v”4_v,.a?ln? > (19
N 7/
Pl 20 v
R R¥v -V

J

for bubbles within liquid bulk, where in both cases all
the physical variables are to be substituted correspond-
ing to saturation state,

In case the system is of polydisperse character, in
other words, if the temperature and size distribution
of disperse phase is nonuniform, then an average is to

he datermined In thic racard there ara twa diffarant
oC GCLermuneG. N LS regarG nlre are two amndrent

alternatives depending on the nature of distribution.
The distribution function may have either discreet or
continuous character.

On condition that the disperse phase is composed of
discreet groups, in each of them the single spherical
particles have temperature 7, and radius R, and the
mass M;; represents the total mass of these groups,
then the av'erage per unit mass of ulsperse phase can

be determined by

Z;’ Za(?—;> Rj)ij
LM,

in which formula the notation z, is to be substituted
corresponding to

Z, =

(20)

= f.S5n e, h,g,r

from the equations (12)—(17), in turn.
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Similarly, in case the disperse phase contains
spherical particles of continuous temperature and size
distribution, the formula

. _[fz(T,RMdTdR
" |[MdTdR

yields the average of the above-mentioned functions
per unit mass of disperse phase.

Till now we dealt with the characteristic functions
concerning the disperse phase, independent of its state
of aggregation (droplet or bubble), but, of course, the
corresponding physical quantities of the coherent phase
are also to be considered, i.e. a weighted average of
both the phases should be determined when describing
the entire two-phase system.

The surface tension is often assumed as a temperature
function what is exact merely in case of a horizontal
plain surface. When investigating the droplets and
bubbles, they are regarded as spherical ones, and the
effect of the curvature can be taken into consideration,
using instead of the usual surface tension the formula

R
p— ag,
R+2C
where C is an empiric constant, which amounts to

107'°—107%m, as can be seen in certain sources
[8, 12]. From the equation (22) by differentiation

oG, R

w.__* do (23)

éT R+2CdT
is yielded. Applying these functions, the equations
(4)-(19) do keep their forms deduced above, apart
from the slight variation that

R.=R+2C

21

22)

Oy

(24)

should be substituted for the radius R in them.

In case of extremely small sizes also this effect can
be considered, if wanted.
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MODIFICATION DES FONCTIONS CARACTERISTIQUES
DANS LES SYSTEMES BIPHASIQUES A UN SEUL COMPOSANT

Résumé —Les fonctions caractéristiques et quelques grandeurs d'état sont modifiées en présence de

I'interface et de la tension interfaciale. La modification de I'énergie libre, de I'entropie, de 'énergie interne,

de l'enthalpie, de l'enthalpie libre, de la chaleur latente et de 'équation de Clausius—Clapeyron est

déterminée pour des gouttes et des bulles de vapeur, a température uniforme ou non et avec une
distribution de dimension.

DIE MODIFIKATION DER CHARAKTERISTISCHEN FUNKTIONEN
IN DISPERSEN ZWEIPHASEN-EINKOMPONENTEN-SYSTEMEN

Zusammenfassung—Die charakteristischen Funktionen und einige Zustandsfunktionen werden unter

Beriicksichtigung von Phasengrenzfiichen und Oberflichenspannungen modifiziert. Die Modifikation

der Funktionen fiir die freie Energie, Entropie, innere Energie, Enthalpie, freie Enthalpie, latente Wirme

sowie der Gleichung von Clausius—-Clapeyron werden fiir Tropfen und Dampfblasen von gleichm@Biger
und ungleichmiBiger Temperatur- und GroBenverteilung abgeleitet.
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MOJUOUKALINSA XAPAKTEPUCTUYECKHUX ®VHKIIUN OJIsI TUCITEPCHBIX
JABYX®PA3ZHBIX OJHOKOMIIOHEHTHbBIX CUCTEM
AnnoTauns — MoauduIMpoBaHbl XapaKTEpPHCTHYECKHE GYHKUMH H HEKOTOPHIE BETHYHHBI B ypaBHE-
HHH COCTOSIHAS TIPH HAMYHH MexX(}a30BOi IOBEPXHOCTH pa3liesia ¥ NOBEPXHOCTHOTO HATMKEHHSA.
Kak pns xamenb, Tax H AN My3bIPHKOB Napa P PaBHOMEPHOM pAaClpeAeIeHHH H HepaBHOMEPHOM
pacrpeneseHut HX 0 TEMOEPATYPE H Pa3MepaM MofydeHa mMoauduuupoBanHas Gopma cBoboqHOM
SHEPrHH, SHTPOIMH, BHYTPEHHEM SHEPIrUH, SHTANLIHH, CBOGOXHON 3HTANBIIMH, CKPLITOH TEIUIOTHI
¥ ypasHeHus Knasuyca-Knainepona.
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